Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio Istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biomass and Bioenergy
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biomass and Bioenergy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Salinity effects on germination, seedlings and full-grown plants of upland and lowland switchgrass cultivars

Authors: Zanetti, Federica; Zegada-Lizarazu, Walter; Lambertini, Carla; Monti, Andrea;

Salinity effects on germination, seedlings and full-grown plants of upland and lowland switchgrass cultivars

Abstract

Abstract Soil salinization is one of the major threats affecting crop production, in particular in the Mediterranean basin where over 1 Mha are salt-affected. Growing lignocellulosic crops, such as switchgrass (Panicum virgatum L.), in marginal saline soils could represent a valuable opportunity to mitigate land abandonment while producing feedstock for biofuels. However, little is still known about salt tolerance of upland and lowland switchgrass cultivars. This study addressed the morphological and physiological responses of Shawnee (upland) and Alamo (lowland) to a range of salinity levels from 0 to 14 dS m−1. Two consecutive experiments were carried out: one in petri dish to test the response to salinity at germination and early growth stages, the other in pot to evaluate the response to salinity until flowering stage (full-grown plants). Both upland and lowland cultivars were able to grow until “critical” salinity levels (14 dS m−1) but their tolerance differed depending on growth stage. Alamo showed a higher tolerance to salinity than Shawnee at very early growth stages (germination/emergence), presenting a germination rate more than double that of Shawnee (60 vs. 19%, main effect cultivar). Nevertheless, Shawnee resulted in a higher tolerance at a full-grown stage likely due to a more efficient salt exclusion capacity, as indicated by the higher residual soil electric conductivity at the end of the experiment detected in Shawnee pots. Final biomass production was anyhow considerably significantly higher in Alamo than Shawnee under any tested salinity level, which demonstrated the improved ability of lowland cultivar to produce biomass compared to Shawnee which otherwise might have invested resources into exclusion mechanisms.

Country
Italy
Keywords

Advanced biofuels; Lignocellulose; Marginal land; Perennial grasses; Salt stress, Advanced biofuels; Lignocellulose; Marginal land; Perennial grasses; Salt stress; Forestry; Renewable Energy, Sustainability and the Environment; Agronomy and Crop Science; Waste Management and Disposal

Powered by OpenAIRE graph
Found an issue? Give us feedback