
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Mercury(II) removal from aqueous solutions by nonviable Bacillus sp. from a tropical estuary

pmid: 16219462
Use of microorganisms for removing mercury is an effective technology for the treatment of industrial wastewaters and can become an effective tool for the remediation of man-impacted coastal ecosystems with this metal. Nonviable biomass of an estuarine Bacillus sp. was employed for adsorbing Hg(II) ions from aqueous solutions at six different concentrations. It was observed that 0.2 g dry weight of nonviable biomass was found to remove from 0.023 mg (at 0.25 mg L(-1) of Hg(II)) to 0.681 mg (at 10.0 mg L(-1) of Hg(II)). Most of the mercury adsorption occurred during the first 20 min. It was found that changes in pH have a significant effect on the metal adsorption capacity of the bacteria, with the optimal pH value between 4.5 and 6.0 at 25 degrees C when solutions with 1.0, 5.0 and 10.0 mg L(-1) of Hg(II) were used.
Tropical Climate, Bacillus, Mercury, Hydrogen-Ion Concentration, Water Purification, Solutions, Industrial Microbiology, Waste Management, Biomass, Mexico, Water Pollutants, Chemical
Tropical Climate, Bacillus, Mercury, Hydrogen-Ion Concentration, Water Purification, Solutions, Industrial Microbiology, Waste Management, Biomass, Mexico, Water Pollutants, Chemical
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).106 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
