Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Application of the biorefinery concept to produce l-lactic acid from the soybean vinasse at laboratory and pilot scale

Authors: Ashok Pandey; Paula Fernandes de Siqueira; Susan Grace Karp; Luciana Porto de Souza Vandenberghe; Jean-Luc Tholozan; Carlos Ricardo Soccol; Vanete Thomaz-Soccol; +3 Authors

Application of the biorefinery concept to produce l-lactic acid from the soybean vinasse at laboratory and pilot scale

Abstract

Lactic acid is a product that finds several applications in food, cosmetic, pharmaceutical and chemical industries. The main objective of this work was the development of a bioprocess to produce L(+)-lactic acid using soybean vinasse as substrate. Among ten strains, Lactobacillus agilis LPB 56 was selected for fermentation, due to its ability to metabolize the complex oligosaccharides. Fermentation was conducted without need for supplementary inorganic nitrogen sources or yeast extract. Kinetic and yield parameters determined at laboratory scale were 0.864 and 0.0162 for YP/S and YX/S, 0.0145 g/L h (rx), 1.32 g/L h (rs) and 1.13 g/L h (rp). The use of vinasse enriched with soybean molasses provided higher lactic acid concentration (138 g/L), the best proportion of inoculum being 25% (v/v). After scale-up to a pilot plant, kinetic and yield parameters were 0.849 and 0.0353 for YP/S and YX/S, 0.0278 g/L h (rx), 0.915 g/L h (rs) and 0.863 g/L h (rp).

Keywords

Waste Products, Glycine max, Nitrogen, Centrifugation, Pilot Projects, Culture Media, Kinetics, Lactobacillus, Bioreactors, Yeasts, Fermentation, Carbohydrate Metabolism, Molasses, Biomass, Lactic Acid, Laboratories, Biotechnology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    68
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
68
Top 10%
Top 10%
Top 10%