
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Water extraction of pyrolysis oil: The first step for the recovery of renewable chemicals

pmid: 21592785
The interest in biomass as a source of renewable energy and chemicals has been increasing in keeping up with the transition to a sustainable bio-based economy. An important initial step of chemicals recovery from biomass-derived pyrolysis oil is water extraction where most of polar compounds are isolated in the aqueous phase. This study was done to investigate the effects of stirring rate and water-to-oil ratio on the extraction capability (distribution coefficient and yield), water content, and atomic composition of both aqueous and organic phases. The results show that the stirring rate above 300 rpm has no influence on the equilibrium. Increasing the water-to-oil ratio dilutes the aqueous phase without changing the atomic distribution. Forest residue-derived pyrolysis oil should be extracted at a water-to-oil ratio of 0.65-0.7, whereas pine-derived pyrolysis oil is preferably extracted at the lowest feasible water-to-oil ratio where complete phase separation occurs, which is 0.5 in this study.
- Technical University Eindhoven Netherlands
- Technical University Eindhoven Netherlands
- Eindhoven University of Technology Netherlands
- Technical University Eindhoven TU Eindhoven Research Portal Netherlands
Conservation of Natural Resources, Temperature, Water, Research Support, Pinus, Trees, Solubility, Journal Article, SDG 7 - Affordable and Clean Energy, Non-U.S. Gov't, Oils, SDG 7 – Betaalbare en schone energie
Conservation of Natural Resources, Temperature, Water, Research Support, Pinus, Trees, Solubility, Journal Article, SDG 7 - Affordable and Clean Energy, Non-U.S. Gov't, Oils, SDG 7 – Betaalbare en schone energie
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).119 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
