
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effect of light intensity, pH, and temperature on triacylglycerol (TAG) accumulation induced by nitrogen starvation in Scenedesmus obliquus

pmid: 23774290
Microalgae-derived lipids in the form of triacylglycerols (TAGs) are considered an alternative resource for the production of biofuels and food commodities. Large scale production of microalgal TAGs is currently uneconomical. The cost price could be reduced by improving the areal and volumetric TAG productivity. The economic value could be increased by enhancing the TAG quality. To improve these characteristics, the impact of light intensity, and the combined impact of pH and temperature on TAG accumulation were studied for Scenedesmus obliquus UTEX 393 under nitrogen starved conditions. The maximum TAG content was independent of light intensity, but varied between 18% and 40% of dry weight for different combinations of pH and temperature. The highest yield of fatty acids on light (0.263 g/mol photon) was achieved at the lowest light intensity, pH 7 and 27.5 °C.
- Wageningen University & Research Netherlands
photosynthesis, neochloris-oleoabundans, Light, Nitrogen, microalgae, growth, Temperature, biodiesel, Hydrogen-Ion Concentration, cultures, Culture Media, nannochloropsis sp, fatty-acid-composition, Triglycerides, Scenedesmus
photosynthesis, neochloris-oleoabundans, Light, Nitrogen, microalgae, growth, Temperature, biodiesel, Hydrogen-Ion Concentration, cultures, Culture Media, nannochloropsis sp, fatty-acid-composition, Triglycerides, Scenedesmus
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).225 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
