Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Agritroparrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Agritrop
Article . 2013
Data sources: Agritrop
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Implications of the biofuels policy mandate in Thailand on water: The case of bioethanol

Authors: Gheewala, Shabbir H.; Silalertruksa, Thapat; Nilsalab, Pariyapat; Mungkung, Rattanawan; Perret, Sylvain; Chaiyawannakarn, Nuttapon;

Implications of the biofuels policy mandate in Thailand on water: The case of bioethanol

Abstract

The study assesses the implications of the bioethanol policy mandate in Thailand of producing 9 M litre ethanol per day by 2021 on water use and water deprivation. The results reveal that water footprint (WF) of bioethanol varies between 1396 and 3105 L water/L ethanol. Cassava ethanol has the highest WF followed by molasses and sugarcane ethanol, respectively. However, in terms of fresh water (especially irrigation water) consumption, molasses ethanol is highest with 699-1220 L/L ethanol. To satisfy the government plan of bioethanol production in 2021, around 1625 million m(3) of irrigation water/year will be additionally required, accounting for about 3% of the current active water storage of Thailand. Two important watersheds in the northeastern region of Thailand are found to be potentially facing serious water stress if water resources are not properly managed. Measures to reduce water footprint of bioethanol are recommended.

Country
France
Keywords

Manihot, Manihot esculenta, P06 - Sources d'énergie renouvelable, Water Cycle, Water Supply, Molasses, P10 - Ressources en eau et leur gestion, Dehydration, Ethanol, Thailand, Saccharum, Policy, Biofuels, Canne à sucre, agrovoc: agrovoc:c_7701, agrovoc: agrovoc:c_7501, agrovoc: agrovoc:c_4579

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 10%
Top 10%
Top 10%