
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Prediction of biogas yield and its kinetics in reed canary grass using near infrared reflectance spectroscopy and chemometrics

pmid: 23941712
A rapid method is needed to assess biogas and methane yield potential of various kinds of substrate prior to anaerobic digestion. This study reports near infrared reflectance spectroscopy (NIRS) as a rapid alternative method to the conventional batch methods for prediction of specific biogas yield (SBY), specific methane yield (SMY) and kinetics of biogas yield (k-SBY) of reed canary grass (RCG) biomass. Dried and powdered RCG biomass with different level of maturity was used for biochemical composition analysis, batch assays and NIRS analysis. Calibration models were developed using partial least square (PLS) regression from NIRS spectra. The calibration models for SBY (R(2)=0.68, RPD=1.83) and k-SBY (R(2)=0.71, RPD=1.75) were better than the model for SMY (R(2)=0.53, RPD=1.49). Although the PLS model for SMY was less successful, the model performance was better compared to the models based on chemical composition.
- Aarhus University Denmark
PLS, Lignin, iPLS, biogas, Biomass, Phalaris, Least-Squares Analysis, Spectroscopy, Near-Infrared, methane, Reproducibility of Results, NIR, Models, Theoretical, Kinetics, Biofuels, Calibration, Multivariate Analysis, Gases, Methane
PLS, Lignin, iPLS, biogas, Biomass, Phalaris, Least-Squares Analysis, Spectroscopy, Near-Infrared, methane, Reproducibility of Results, NIR, Models, Theoretical, Kinetics, Biofuels, Calibration, Multivariate Analysis, Gases, Methane
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).21 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
