Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Characterization and fatty acid profiling in two fresh water microalgae for biodiesel production: Lipid enhancement methods and media optimization using response surface methodology

Authors: Kalimuthu Jawahar Raj; Rathinasamy Karpagam; Perumal Varalakshmi; Balasubramaniem Ashokkumar;

Characterization and fatty acid profiling in two fresh water microalgae for biodiesel production: Lipid enhancement methods and media optimization using response surface methodology

Abstract

Two fresh water microalgae, Coelastrella sp. M-60 and Micractinium sp. M-13 were investigated in this study for their potential of biodiesel production. For increasing biomass and lipid production, these microalgae were subjected to nutrient starvation (nitrogen, phosphorous, iron), salinity stress and nutrient supplementation with sugarcane industry effluent, citric acid, glucose and vitamin B12. The lipid productivity obtained from the isolates Coelastrella sp. M-60 (13.9 ± 0.4 mg/L/day) and Micractinium sp. M-13 (11.1 ± 0.2 mg/L/day) was maximum in salinity stress. The media supplemented with all the four nutrients yielded higher lipid productivity than the control. The response surface methodology (RSM) was employed to evaluate the effect of sugarcane industry effluent and citric acid on growth and lipid yield. Fatty acid profile of Coelastrella sp. M-60 and Micractinium sp. M-13 were composed of C-14, C-16:0, C-18:0, C-18:1 and C-18:2 and their fuel properties were also in accordance with international standards.

Keywords

Osmosis, Salinity, Nitrogen, Iron, Fresh Water, Citric Acid, Industrial Microbiology, Microalgae, Biomass, Fatty Acids, Phosphorus, Lipids, Vitamin B 12, Glucose, Biofuels, Chromatography, Thin Layer, Gasoline

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    94
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
94
Top 1%
Top 10%
Top 1%