
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Characterization and fatty acid profiling in two fresh water microalgae for biodiesel production: Lipid enhancement methods and media optimization using response surface methodology

pmid: 25682476
Characterization and fatty acid profiling in two fresh water microalgae for biodiesel production: Lipid enhancement methods and media optimization using response surface methodology
Two fresh water microalgae, Coelastrella sp. M-60 and Micractinium sp. M-13 were investigated in this study for their potential of biodiesel production. For increasing biomass and lipid production, these microalgae were subjected to nutrient starvation (nitrogen, phosphorous, iron), salinity stress and nutrient supplementation with sugarcane industry effluent, citric acid, glucose and vitamin B12. The lipid productivity obtained from the isolates Coelastrella sp. M-60 (13.9 ± 0.4 mg/L/day) and Micractinium sp. M-13 (11.1 ± 0.2 mg/L/day) was maximum in salinity stress. The media supplemented with all the four nutrients yielded higher lipid productivity than the control. The response surface methodology (RSM) was employed to evaluate the effect of sugarcane industry effluent and citric acid on growth and lipid yield. Fatty acid profile of Coelastrella sp. M-60 and Micractinium sp. M-13 were composed of C-14, C-16:0, C-18:0, C-18:1 and C-18:2 and their fuel properties were also in accordance with international standards.
- Madurai Kamaraj University India
- Madurai Kamaraj University India
Osmosis, Salinity, Nitrogen, Iron, Fresh Water, Citric Acid, Industrial Microbiology, Microalgae, Biomass, Fatty Acids, Phosphorus, Lipids, Vitamin B 12, Glucose, Biofuels, Chromatography, Thin Layer, Gasoline
Osmosis, Salinity, Nitrogen, Iron, Fresh Water, Citric Acid, Industrial Microbiology, Microalgae, Biomass, Fatty Acids, Phosphorus, Lipids, Vitamin B 12, Glucose, Biofuels, Chromatography, Thin Layer, Gasoline
2 Research products, page 1 of 1
- 2018IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).94 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
