
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Enhancing the production of eicosapentaenoic acid (EPA) from Nannochloropsis oceanica CY2 using innovative photobioreactors with optimal light source arrangements

pmid: 25777066
Enhancing the production of eicosapentaenoic acid (EPA) from Nannochloropsis oceanica CY2 using innovative photobioreactors with optimal light source arrangements
Binary combinations of LEDs with four different colors were used as light sources to identify the effects of multiple wavelengths on the production of eicosapentaenoic acid (EPA) by an isolated microalga Nannochloropsis oceanica CY2. Combining LED-Blue and LED-Red could give the highest EPA productivity of 13.24 mg L(-1) d(-1), which was further enhanced to 14.4 mg L(-1) d(-1) when using semi-batch operations at a 40% medium replacement ratio. A novel photobioreactor with additional immersed light sources improved light penetration efficiency and led to an 38% (0.170-0.235 g L(-1) d(-1)) increase in the microalgae biomass productivity and a 9% decrease in electricity consumption yield of EPA (10.15-9.33 kW-h (g EPA)(-1)) when compared with the control (i.e., without immersed light sources). Operating the immersed LEDs at a flashing-frequency of 9 Hz further lowered the energy consumption yield to 8.87 kW-h (g EPA)(-1).
- National Cheng Kung University Taiwan
- Kobe University Japan
- National Cheng Kung University Taiwan
- Research and Technology Center of Energy Tunisia
- Research and Technology Center of Energy Tunisia
Bioreactors, Eicosapentaenoic Acid, Light, Photochemistry, Microalgae
Bioreactors, Eicosapentaenoic Acid, Light, Photochemistry, Microalgae
6 Research products, page 1 of 1
- 2013IsAmongTopNSimilarDocuments
- 1993IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2012IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).54 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
