
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Biorefinery integration of microalgae production into cassava processing industry: Potential and perspectives

pmid: 29055530
Cassava, the 5th most important staple crop, generates at least 600L of wastewater per ton of processed root. This residue, cassava processing wastewater (CPW) has a high chemical oxygen demand, that can reach 56 g/L, and has also high concentrations of several mineral nutrients. The cultivation of microalgae such as Chlorella, Spirulina and wild strains was evaluated in the last years in raw, minimally processed and partially digested CPW. Concentrations of 2-4 g/L of these microalgae, comparable to those obtained in synthetic media, could be reached. The BOD of the residue was reduced by up to 92%. This process can be integrated into cassava processing industries, if challenges such as the toxicity of the concentrated residue, bacterial contamination, and the isolation of robust strains are addressed. Because CPW carries about 11% of the crop energy, integrating biogas production and microalgal cultivation into the cassava processing chain is promising.
- Federal University of Paraná Brazil
- State University of West Paraná Brazil
Manihot, Chlorella, Wastewater, Biofuels, Microalgae, Biomass
Manihot, Chlorella, Wastewater, Biofuels, Microalgae, Biomass
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).74 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
