
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Nutrient recovery from wastewaters by microalgae and its potential application as bio-char

pmid: 30082133
The intensive agricultural practices are increasing the demand for chemical fertilizers, being currently produced from a non-environmental friendly way. Besides the environmental impacts, the nutrient uptake efficiency by the crops is very low, representing huge losses into the fields. Therefore, it is crucial to study alternatives for the current chemical fertilizers, which simultaneous improve nutrient efficiency and minimize environmental impacts. A sustainable solution is to recover nutrients from wastewater streams with microalgal cultures and the biomass conversion into bio-char for soil amendment. Wastewaters are loaded with nitrogen and phosphorus and can be used as culture medium for microalgae. Thus, nutrients can be recycled, reducing the requirement of chemical fertilizers. This paper aims to review nutrient recovery from wastewater using microalgae and the biomass conversion into bio-char. This process promotes nutrient recycling and the bio-char (when added to soil) improves the nutrient uptake efficiency by crops.
- Universidade do Porto Portugal
- Universidade Lusófona do Porto Portugal
Nitrogen, Phosphorus, Wastewater, Charcoal, Microalgae, Biomass
Nitrogen, Phosphorus, Wastewater, Charcoal, Microalgae, Biomass
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).87 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
