
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Thermochemical conversion of cobalt-loaded spent coffee grounds for production of energy resource and environmental catalyst

pmid: 30243241
Thermochemical conversion of cobalt (Co)-loaded lignin-rich spent coffee grounds (COSCG) was carried out to find the appropriate pyrolytic conditions (atmospheric gas and pyrolytic time) for syngas production (H2 and CO) and fabricate Co-biochar catalyst (CBC) in one step. The use of CO2 as atmospheric gas and 110-min pyrolytic time was optimal for generation of H2 (∼1.6 mol% in non-isothermal pyrolysis for 50 min) and CO (∼4.7 mol% in isothermal pyrolysis for 60 min) during thermochemical process of COSCG. The physicochemical properties of CBC fabricated using optimized pyrolytic conditions for syngas production were scrutinized using various analytical instruments (FE-SEM, TEM, XRD, and XPS). The characterizations exhibited that the catalyst consisted of metallic Co and surface wrinkled carbon layers. As a case study, the catalytic capability of CBC was tested by reducing p-nitrophenol (PNP), and the reaction kinetics of PNP in the presence of CBC was measured from 0.04 to 0.12 s-1.
- Hong Kong Polytechnic University China (People's Republic of)
- Hong Kong University of Science and Technology (香港科技大學) China (People's Republic of)
- Sejong University Korea (Republic of)
- Hong Kong University of Science and Technology (香港科技大學) China (People's Republic of)
- Sejong University Korea (Republic of)
660, Carbon-based catalyst, Cobalt, Catalytic reduction, Engineered biochar, Coffee, Lignin, Carbon, Catalysis, CO 2 utilization, Lignin valorization, Kinetics, Waste biomass recycling, Biomass
660, Carbon-based catalyst, Cobalt, Catalytic reduction, Engineered biochar, Coffee, Lignin, Carbon, Catalysis, CO 2 utilization, Lignin valorization, Kinetics, Waste biomass recycling, Biomass
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).37 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
