
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Factors affecting the induction of UV protectant and lipid productivity in Lyngbya for sequential biorefinery product recovery

With objective to design cyanobacterial biorefinery, taking Lyngbya as a model organism, a detail sequential protocol has been developed for production of UV protectant and lipids. This study addresses ultra violet radiations (UVR), exposure time of UVRT, nitrogen stress, salinity, oxidative stress to produce UV protectant and lipid in cyanobacteria. To evaluate these parameters a design of experiment (DOE; using a 2 k design) was performed. Based on chemical solubility property of UV protectant in form of mycosporine like amino acid (MAAs) and lipids were extracted. Quantitative and qualitative assay of UV protectant was confirmed by spectrophotometric scanning and Fourier-transform infrared spectroscopy and lipid through fatty acid methyl esters analysis. Nitrogen abundance and high oxidative stress is helpful in the synthesis of UV protectant. This study concluded, UV exposure is good strategy to induce synthesis of UV protectant and saturated lipid productivity. This biorefinery approach encourages economical and environmentally sustainable options.
670, Lipid saturation index, Nitrogen, Ultraviolet Rays, Fatty Acids, Mass balance, Cyanobacteria, Lipids, Lyngbya purpurem, UV protectant, Biodiesel, Amino Acids
670, Lipid saturation index, Nitrogen, Ultraviolet Rays, Fatty Acids, Mass balance, Cyanobacteria, Lipids, Lyngbya purpurem, UV protectant, Biodiesel, Amino Acids
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).28 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
