Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enhancement of growth and paramylon production of Euglena gracilis by co-cultivation with Pseudoalteromonas sp. MEBiC 03485

Authors: Min Seo Jeon; Jeong-Joo Oh; Jee Young Kim; Sang-Il Han; Sang Jun Sim; Yoon-E Choi;

Enhancement of growth and paramylon production of Euglena gracilis by co-cultivation with Pseudoalteromonas sp. MEBiC 03485

Abstract

This study investigated the putative effects of co-cultivation of Euglena gracilis with Pseudoalteromonas sp. MEBiC 03485 on the growth of E. gracilis and its paramylon production. The strain MEBiC 03485 had beneficial effects on the growth and paramylon contents of E. gracilis. To determine the optimal conditions for co-cultivation, the effects of algal to bacterial inoculum ratios and E. gracilis growth stages were examined. Under optimal conditions, the biomass productivity and paramylon production were increased by more than 23% and 34%, respectively. These effects were attributed to the extracellular polymeric substances (EPS) from the strain MEBiC 03485. GC-MS and HPAEC were carried out to analyze the composition of EPS. It was found that the EPS consisted of rhamnose, galactose, glucose, and mannose. These results suggest a novel approach for potentially enhancing the growth of E. gracilis as well as its paramylon production, via co-culturing with the symbiotic strain MEBiC 03485.

Related Organizations
Keywords

Pseudoalteromonas, Euglena gracilis, Biomass, Glucans

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Average
Top 10%
bronze
Related to Research communities
Energy Research