Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2019 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Operational and economic aspects of Spirulina-based biorefinery

Authors: Jorge Alberto Vieira Costa; Gabriel Martins da Rosa; Bárbara Catarina Bastos Freitas; B. Greg Mitchell; Michele Greque de Morais; Luiza Moraes;

Operational and economic aspects of Spirulina-based biorefinery

Abstract

Microalgae biorefinery systems have been extensively studied from the perspective of resources, energy expenditure, biofuel production potential, and high-added value products. The genus Spirulina (Arthrospira) stands out among the microalgae of commercial importance. It accounts for over 30% of biomass produced globally because of high protein concentration and, carotenoid and phycocyanin content. Spirulina cultivation can be used to reduce greenhouse gases and for effluent treatment. Furthermore, its cellular morphology facilitates biomass recovery, which contributes to the process cost reduction. Spirulina biomass is widely applicable in food, feed, cosmetics, biofertilizers, biofuels, and biomaterials. A feasibility analysis of Spirulina biorefinery would provide specific information for the decision-making for the improvement of the Spirulina production process. In that context, this review aimed to present a parameter assessment to contribute to the economic viability of Spirulina production in a biorefinery system.

Keywords

Phycocyanin, Biofuels, Microalgae, Spirulina, Biomass

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    149
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
149
Top 1%
Top 10%
Top 1%