
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Strategies for the valorisation of a protein-rich saline waste stream into polyhydroxyalkanoates (PHA)

Saline Mussels Cooking Wastewater was valorised to produce PHA with Mixed Microbial Cultures (MMC). Due to the high protein content (1.8-5.7 g CODPROT/L), PHA accumulating capacity was below 10%, so several strategies were tested. In the acidification unit, Na(HCO3) was added, increasing protein conversion into Volatile Fatty Acids (VFA) from 10.3% to 69.2% and subsequent PHA accumulation from 6.9 to 14.7%. In the enrichment unit, the incorporation of a settling stage after the feast phase provoked a shift in the proteins' oxidation from the feast to the famine phase, where the nitrogen released in the famine is used by the MMC for growth. This increased the biomass concentration and the tolerated COD (from 1.6 to 4.2 g VSS/L and from 2.2 to 4.38 g COD/L). Finally, varying the proteins/VFA ratio for MMC acclimation to proteins allowed increasing PHA accumulation from 8.8 to 41.5%.
Nitrogen, Polyhydroxyalkanoates, Mixed microbial cultures, Wastewater, High salinity wastewater, Industrial wastewater, Bioreactors, Protein-rich waste streams, Biomass, Bioplastics
Nitrogen, Polyhydroxyalkanoates, Mixed microbial cultures, Wastewater, High salinity wastewater, Industrial wastewater, Bioreactors, Protein-rich waste streams, Biomass, Bioplastics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
