Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Novel approach for harvesting of microalgal biomass using electric geyser waste material deposit as flocculant in coupling with poultry excreta leachate

Authors: Har Mohan Singh; V.V. Tyagi; Rifat Azam; Puja Khare; Richa Kothari; Ahmet Sarı;

Novel approach for harvesting of microalgal biomass using electric geyser waste material deposit as flocculant in coupling with poultry excreta leachate

Abstract

The aim of this work was to study the flocculation efficiency of algal biomass (Chlorella pyrenoidosa) in coupling with waste materials i.e. poultry excreta leachate by using other waste material which was obtained from deposition of scaling in electric geyser. Utilization of electric geyser waste material deposit (EGWMD) for flocculation is a novel approach because of various elements which are replica of chemical flocculants responsible for flocculation mechanism in culture medium. Flocculation process was optimized by response surface methodology and 98.21% flocculation efficiency was achieved with designed process parameters as temperature 32.5 °C, flocculant dose 275 mgL-1, pH 5 and time 30 min. The reusability of spent medium was also analyzed at 70.2% and 32.5% flocculation efficiency with two successive steps. The cellular morphology of pre-harvested and post-harvested Chlorella pyrenoidosa was also observed. EGWMD is abundant and freely available that has no application till now and can alternate of chemical flocculants.

Keywords

Flocculation, Chlorella, Poultry, Microalgae, Animals, Biomass

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average