Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS - Institutional...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Combustion kinetics of hydrochar from cow-manure digestate via thermogravimetric analysis and peak deconvolution

Authors: Benedetti V; Pecchi M; Baratieri M;

Combustion kinetics of hydrochar from cow-manure digestate via thermogravimetric analysis and peak deconvolution

Abstract

Hydrothermal carbonization (HTC) can convert wet biomass into hydrochar (HC), a solid carbonaceous material exploitable as fuel. In this study, HTC was applied to anaerobic digestate from cow manure. HCs obtained at three HTC temperatures (180, 220, 250 °C) were characterized in detail and their combustion behavior was investigated by thermogravimetric analysis (TGA) coupled with peak deconvolution. Increasing HTC temperatures increased the fixed carbon content (17.9-20.7%), the ash content (27.2-32.5%) and the calorific value (14.3-18.2 MJ/kg), while decreased the hydrogen (5.01-4.54%) and oxygen content (24.09-12.35%) of HCs. DTG profiles peak deconvolution unveils the presence of five major components in the HCs. HCs combustion kinetics were studied applying the KAS method. Average apparent activation energy values of 100, 88, 67 kJ mol-1 were obtained for HC180, HC220, HC250, respectively. HTC at 250 °C produced the HC with the best fuel characteristics.

Country
Italy
Keywords

Temperature, Hydrothermal carbonization, Cow manure digestate, Hydrochar, Thermogravimetric analysis, Combustion kinetics, Carbon, Manure, Kinetics, Animals, Cattle, Female, Biomass

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Average
Top 10%