
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Probing the robustness of Geobacter sulfurreducens against fermentation hydrolysate for uses in bioelectrochemical systems

pmid: 36423764
In this study, impacts of toxic ions/acids found in real fermentation-hydrolysate on the model exoelectrogenic G. sulfurreducens were investigated. Initially, different concentrations of acetate, butyrate, propionate, Na+, and K+ were tested, individually and in combination, for effects on the planktonic growth, followed by validation with diluted-hydrolysate. Meanwhile, it could be shown that (1) excess Na+ (≥100 mM) causes inhibition that can be reduced by K+ replacement, (2) butyrate (≥10 mM) induces higher toxicity than propionate, and (3) hydrolysate induces synergistic inhibition to G. sulfurreducens where organic constituents contributed more than Na+. Afterwards, compared with impacts on planktonic cells, the pre-enriched anodic biofilm of G. sulfurreducens in BESs showed higher robustness against diluted-hydrolysate, achieving current densities of 1.4-1.7 A/m2 (at up to ∼30 mM butyrate and propionate as well as ∼240 mM Na+). As a conclusion, using G. sulfurreducens in BESs dealing with fermentation-hydrolysate can be regulated for efficacious energy recovery.
- Karlsruhe Institute of Technology Germany
- Hamburg University of Technology Germany
info:eu-repo/classification/ddc/570, 570, biology, Bioelectric Energy Sources, Life sciences, Butyrates, Fermentation, ddc:570, Propionates, Geobacter
info:eu-repo/classification/ddc/570, 570, biology, Bioelectric Energy Sources, Life sciences, Butyrates, Fermentation, ddc:570, Propionates, Geobacter
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
