Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biosensors and Bioel...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biosensors and Bioelectronics
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of oxygen on Shewanella decolorationis NTOU1 electron transfer to carbon-felt electrodes

Authors: Stefano Freguia; Seiya Tsujimura; Sheng-Shung Cheng; Shiue-Lin Li; Shiue-Lin Li; Osamu Shirai; Kenji Kano; +1 Authors

Effects of oxygen on Shewanella decolorationis NTOU1 electron transfer to carbon-felt electrodes

Abstract

To clarify the major factor caused by oxygen-enhancing charge production of Shewanella decolorationis NTOU1 towards a polarized anode, a series of experimental runs (i.e., with/without ambient air flushing and with/without ammonia addition as nitrogen source) were conducted in this study. Within 6-day of operation at +0.4 V vs. Ag|AgCl and starting with 35 mM of lactate, consistently the electrical charge production under the aerobic condition was higher than that under the anaerobic condition. In all the experimental runs, the values of nicotinamide adenine dinucleotide (NADH) production were found to be correlated positively and significantly with the charge production, but the highest Coulombic efficiency of 18% was observed under the anaerobic conditions without ammonia addition while the lowest charge production occurred. Those results indicate that NADH production enhanced by oxygen is the leading cause of the increase of the charge production, but the biomass production and the oxygen reduction would both consume NADH electrons and lead to lower electron recoveries. In addition, whether under constant aerobic or anaerobic, or alternating aerobic/anaerobic conditions, chronoamperometric results made it possible to rule out other factors, like lactate uptake rate or cell growth, which might increase the charge production under aerobic conditions. By using high performance liquid chromatography, some diffusive flavins (e.g., 0.5 microM of riboflavin) were found under the aerobic condition, but were not found under the anaerobic one. However, from results of cyclic voltammetry (CV), the signals of flavins were found to be approximately the same under both conditions. Although it is inferred that oxygen renders the flavins secreted extracellularly, that is not the major effect of oxygen for boosting the charge production. Furthermore, bound flavins under anaerobic condition were found to be effectively electrocatalytic according to sigmoidal CV result.

Country
Australia
Keywords

Shewanella, 660, Bioelectric Energy Sources, Biosensing Techniques, Electrochemical Techniques, NADH production, NAD, Aerobiosis, Electron Transport, Oxygen, Charge production, Coulomb efficiency, Ammonia, Flavins, Anaerobiosis, Lactic Acid, Oxidation-Reduction, Chromatography, High Pressure Liquid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Top 10%
Top 10%
Related to Research communities
Energy Research