Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Institut national de...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Carbohydrate Polymers
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Microwave-assisted extraction of chitosan from Rhizopus oryzae NRRL 1526 biomass

Authors: Krishnamoorthy Hegde; Mausam P. Verma; Satinder Kaur Brar; Satinder Kaur Brar; Joseph Sebastian; Tarek Rouissi;

Microwave-assisted extraction of chitosan from Rhizopus oryzae NRRL 1526 biomass

Abstract

Microwave-assisted extraction (MAE) of chitosan from dried fungal biomass of Rhizopus oryzae NRRL1526, obtained by culturing on potato dextrose broth (PDB), was performed and the optimal conditions required were identified using statistical analysis for the first time in this study. This microwave-assisted extraction (MAE) was compared against the conventional autoclave assisted method of chitosan extraction. The full factorial experimental design was used to investigate the impact of operating parameters of MAE, microwave power (100 W-500 W), and duration (10 min-30 min), on alkaline insoluble material (AIM) yield, chitosan yield, and degree of deacetylation (DDA). The effect of operating conditions was then evaluated using full factorial data analysis and optimum condition for MAE of chitosan was identified using response surface methodology to be 300 W and 22 min. This optimum condition identified was then further evaluated and the chitosan obtained characterized. Higher chitosan yield of 13.43 ± 0.3% (w/w) of fungal biomass was obtained when compared to that obtained, 6.67% ± 0.3% (w/w) of dry biomass, for the conventional extraction process. MAE yielded chitosan of higher degree of deacetylation, 94.6 ± 0.9% against 90.6 ± 0.5% (conventional heating), but the molecular weight was observed to be similar to that obtained by using conventional autoclave heating. MAE of chitosan was observed to yield a higher quantity of chitosan when compared to conventional extraction process and obtained chitosan exhibited a higher degree of deacetylation as well as molecular weight. The lower energy consumption of 0.11 kW h for MAE (5 kW h for conventional process) and the concomitant reduction in the energy bill to 1.1 cents from 50 cents, in addition to the above results, show that microwave irradiation is a more efficient and environment-friendly means to obtain chitosan from fungal biomass.

Country
Canada
Keywords

Chitosan, microwave, degree of deacetylation, R. Oryzae, Acetylation, Molecular Weight, Research Design, 615, extraction, fungal biomass, Biomass, chitosan, Microwaves, Rhizopus

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    64
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
64
Top 1%
Top 10%
Top 10%
Green
bronze
Related to Research communities
Energy Research