Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemical Engineering...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemical Engineering Journal
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Isotherms, thermodynamics and kinetics of methane-shale adsorption pair under supercritical condition: Implications for understanding the nature of shale gas adsorption process

Authors: Haikuan Nie; Xuan Tang; Ruijing Wang; Xiaoliang Wei; Wei Dang; Wei Dang; Fengqin Wang; +3 Authors

Isotherms, thermodynamics and kinetics of methane-shale adsorption pair under supercritical condition: Implications for understanding the nature of shale gas adsorption process

Abstract

Abstract This research article selects supercritical methane and organic-rich shale as adsorbate-adsorbent pair to investigate methane adsorption behavior and enrich our understanding of the nature of shale gas adsorption process. The isotherms and kinetics of methane-shale adsorption pair are measured at temperatures of 303 K, 323 K, 343 K and 363 K by using a volumetric experimental setup. Then, the Langmuir-based (Langmuir, Langmuir + k, Langmuir + Henry), BET-based (BET, BET + k, BET + Henry) and DA-based (DA, DA + k and DA + Henry) excess models are used to interpret measured excess isotherms, and the Unipore Diffusion (UD), Bidisperse Diffusion (BD) and Two Combined First-Order Rate (TCFOR) models are used to interpret the adsorption kinetics data. Instead of using the coefficient of determination (R2), this work used the corrected Akaike’s Information Criterion (AICc) for model selection. It is found that the DA + Henry model is more suitable for excess adsorption isotherms, and the TCFOR model is more appropriate for adsorption kinetics study. Additionally, for methane-shale adsorption under supercritical condition, the fugacity is of great significance in evaluating thermodynamic properties including isosteric heat of adsorption (qst), enthalpy change (ΔH), entropy change (ΔS) and Gibbs free energy change (ΔG). These properties show strong dependence on adsorption amount and temperature, and suggest that supercritical methane adsorption on organic-rich shale is a process of physisorption, exothermic and spontaneous. Further, the kinetics parameters extracted from kinetics curves suggest that the methane adsorption at each pressure step is a two-stage process, with a fast macropore diffusion process at early time, followed by a slow micropore diffusion process at later time. Additionally, the fast macropore diffusion dominates the two-stage adsorption process at lower pressures, while at higher pressures slow micropore diffusion dominates.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    93
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
93
Top 1%
Top 10%
Top 1%