Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemical Engineering...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemical Engineering Journal
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Flue gas-to-ash desulfurization of combustion of textile dyeing sludge: Its dependency on temperature, lignocellulosic residue, and CaO

Authors: Ken-Lin Chang; Xieyuan Wu; Jianli Huang; Fatih Evrendilek; Jingyong Liu; Guanjie Liang;

Flue gas-to-ash desulfurization of combustion of textile dyeing sludge: Its dependency on temperature, lignocellulosic residue, and CaO

Abstract

Abstract Flue gas-to-ash controls on sulfur (S) species of the combustion of textile dyeing sludge (TDS) are pivotal in the achievement of circular and cleaner economies. This experimental study aimed to characterize S transformations in TDS as a function of temperature (600–1000 °C) and blend ratios of spent mushroom substrate (SMS) and calcium oxide (CaO) through thermodynamic equilibrium simulations. The conversion ratio of S to flue gas from the mono-combustion of TDS rose by 29.7% between 600 and 1000 °C and was 92.9% at 1000 °C. The increasing sulfur dioxide (SO2) emission with the high temperature occurred from the decomposition of sulfates. The conversion of S to SO2 decreased significantly with an increase in SMS from 10 to 50% and enhanced the S distribution in fly ash. Potassium and phosphorous in SMS appeared to play a significant role in the conversion of S. The addition of CaO exhibited a good desulfurization performance, with the S content of ash peaking at 5.2% at 800 °C with 7% CaO. The desulfurization efficiency of CaO highly depended on the temperature and blend ratios. The addition of SMS facilitated the agglomeration to form large particles at 1000 °C and formed more micro pores on their surfaces. Our equilibrium simulations pointed to the important role of CaO-assisted co-combustion versus mono-combustion of TDS in the S retention as well as to the enhanced decomposition of calcium sulfate (CaSO4) by SMS. Chlorine had a better affinity toward potassium to promote the release of gaseous potassium chloride (KCl) which in turn appeared to react with SO2 in flue gas and formed sulfates through sulfation reaction.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    76
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
76
Top 1%
Top 10%
Top 1%