Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cement and Concrete ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cement and Concrete Composites
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rammed earth blocks with improved multifunctional performance

Authors: Hannah Porter; Joshua Blake; Navdeep Kaur Dhami; Abhijit Mukherjee;

Rammed earth blocks with improved multifunctional performance

Abstract

Abstract Rammed earth is a traditional construction technology that has proven to be sustainable. This paper explores further improvement of its multifunctional performance by increasing the strength, reducing moisture permeation and increasing the thermal resistance. Surface application of microbial cementation was found to increase the strength by 25%. The water permeability and erosion of the blocks also reduced by 24% and 62% respectively, due to surface application of microbial cementation. The thermal test showed that addition of crumb rubber resulted in a temperature difference of around 30 °C even after 6 h. However, the addition of crumb rubber also reduced the strength. This research demonstrates that significant improvement of overall performance of rammed earth materials can be achieved through various treatments. However, the overall performance requirements are specific to the engineering application and synergistic and antagonistic interactions must be considered to obtain an optimal performance.

Country
Australia
Keywords

Crumb rubber, 690, Bacteria, Rammed earth, 610, Microbial calcite, 620, Sustainability, Bio cementation, Stabilisation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 1%
Top 10%
Top 10%