
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
From casting to 3D printing geopolymers: A proof of concept

The objective of this paper is to define a mix design strategy allowing the implementation of geopolymer in powder bed 3D printing. In a selective binder approach, an aluminosilicate powder bed is activated through the deposit of an alkaline silicate solution. We first show that, in comparison to casting, this technology requires mastering the spreading of the liquid into the powder bed to ensure that the reaction takes place where it is needed. A series of experiments at the drop level, mimicking the 3D printing process, were performed to determine the printing solution composition for a given powder bed packing. We then highlight the relationship between the compressive strength of the printed geopolymer and the powder bed saturation, controlled by the printing parameters. Finally, SEM/EDX analysis confirm the formation of geopolymer with desired Si/Al and Na/Al ratios in the resulting printed material.
Cement and Concrete Research, 143
ISSN:0008-8846
- ETH Zurich Switzerland
- École Polytechnique Fédérale de Lausanne EPFL Switzerland
- Institute for Technology in Architecture Switzerland
- Institute of Construction and Infrastructure Management Switzerland
Powder bed 3D printing, Sustainability, Geopolymers, Powder bed 3D printing; Geopolymers; Mix design; Sustainability, Mix design
Powder bed 3D printing, Sustainability, Geopolymers, Powder bed 3D printing; Geopolymers; Mix design; Sustainability, Mix design
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).42 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
