Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemical Geologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemical Geology
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Stable carbon isotope techniques to quantify CO2 trapping under pre-equilibrium conditions and elevated pressures and temperatures

Authors: Myrttinen, A.; Jeandel, E.; Ukelis, O.; Becker, V.; Geldern, R. van; Blum, P.; Barth, J. A. C.;

Stable carbon isotope techniques to quantify CO2 trapping under pre-equilibrium conditions and elevated pressures and temperatures

Abstract

Abstract Flow-through experiments in the laboratory were conducted to monitor the fate of CO2 using stable carbon isotope (δ13C) techniques in dynamic, pre-equilibrium conditions. Such conditions are typical, for instance in carbon capture storage (CCS), in the initial stages of CO2 injection, near injection well regions of the reservoir. For this purpose, a reactive percolation bench (ICARE 4) was used, injecting a CO2-saturated brine at supercritical conditions (pCO2 = 84 bar, T = 60 °C) through quartzitic limestone at an average flow rate of 2 × 10− 9 m3 s− 1. Calcium (Ca2 +) and dissolved inorganic carbon (DIC) concentration data and pH were used to aid analytical interpretations. During CO2 injection, δ13CDIC values decreased from about − 11‰ to those of the injected CO2 (− 29.3‰), indicating CO2 sourced carbon dominance over a carbonate sourced one in the system. Simultaneously DIC and Ca2 + concentrations increased from 1 mmol L− 1 to a maximum of 71 mmol L− 1 and 31 mmol L− 1, respectively. Isotope and mass balances were used to quantify the amount of DIC originating from either the injected CO2 or carbonates. At the end of the experiments, between 70 and 98% of the total DIC originated from CO2 dissolution, the remaining amount is attributed to carbonate dissolution. Furthermore, the total amount of injected CCO2 trapped as DIC ranged between 9 and 17% and between 83 and 91% was in free phase. The state of carbonate equilibrium of the host fluid, under the high pressure–temperature conditions after CO2 injection was identified, verifying pre-equilibrium conditions. Results confirm observations made in reported field data. This emphasises that the combination of CO2 monitoring, the development of a thorough understanding of carbonate equilibrium, as well as the quantification of CO2-trapping, is essential for a solid assessment of reservoir performance and safety considerations during CO2 injection. These are equally important for understanding water–rock–CO2 dynamics in natural subsurface environments.

Country
Germany
Keywords

Geography & travel, 910, ddc:910, 540, info:eu-repo/classification/ddc/910

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%