Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chemospherearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Chemosphere
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemosphere
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparison of an anaerobic feed and split anaerobic–aerobic feed on granular sludge development, performance and ecology

Authors: Nirmala Dinesh; Ben van den Akker; Ben van den Akker; Ben van den Akker; Benjamin J. Thwaites; Benjamin J. Thwaites; Petra J. Reeve; +2 Authors

Comparison of an anaerobic feed and split anaerobic–aerobic feed on granular sludge development, performance and ecology

Abstract

The retrofitting of existing wastewater sequencing batch reactors (SBRs) to select for rapid-settling aerobic granular sludge (AGS) over floc-based conventional activated sludge (CAS), could be a viable option to decrease reactor cycle time and increase hydraulic capacity. Successful CAS-to-AGS conversion has previously been shown to be highly dependent on having a dedicated anaerobic feed, which presents additional engineering challenges when retrofitting SBRs. In this study we compared the performance of a split anaerobic-aerobic (An-Aer) feed with that of a traditional dedicated anaerobic feed regarding AGS formation and stability, nitrogen removal performance and microbial ecology. Using pilot trials, we showed that AGS could be established and maintained when using a split An-Aer feed at low organic loading rates analogous to that of a parallel full-scale conventional SBR. Additionally, we showed that AGS start-up time and nitrogen removal performance were comparable under a split An-Aer feed and dedicated anaerobic feed. Microbial ecology characterisations based on whole-of-community 16S rRNA profiles and targeted analysis of functional genes specific for nitrifying and denitrifying microorganisms, showed that the two different feed strategies had only subtle impacts on both the overall community composition and functional ecology. A much greater divergence in microbial ecology was seen when comparing AGS with CAS. Data presented here will be of value to those planning to retrofit existing CAS-based SBRs to operate with AGS and demonstrates the viability of using a more cost-effective split An-Aer feed configuration over a dedicated anaerobic feed.

Country
Australia
Keywords

Nitrogen, Wastewater, Waste Disposal, Fluid, anaerobic feed, Bioreactors, RNA, Ribosomal, 16S, aerobic granular sludge, Anaerobiosis, Biomass, SBR, Sewage, Agriculture, Equipment Design, aerobic feed, Aerobiosis, qPCR, Water Microbiology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%
bronze