Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Universitat Politècn...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Chemosphere
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Recolector de Ciencia Abierta, RECOLECTA
Article . 2021 . Peer-reviewed
License: CC BY NC ND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemosphere
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2021
License: CC BY NC ND
Data sources: Datacite
Digital.CSIC
Article . 2021 . Peer-reviewed
Data sources: Digital.CSIC
Chemosphere
Article . 2021 . Peer-reviewed
http://dx.doi.org/10.1016/j.ch...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 14 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Constructed wetlands operated as bioelectrochemical systems for the removal of organic micropollutants

Authors: Hartl, Marco; García Galán, María Jesús; Matamoros Mercadal, Víctor; Fernández Gatell, Marta; Rousseau, Diederik; Du Laing, Gijs; Garfi, Marianna; +1 Authors

Constructed wetlands operated as bioelectrochemical systems for the removal of organic micropollutants

Abstract

The removal of organic micropollutants (OMPs) has been investigated in constructed wetlands (CWs) operated as bioelectrochemical systems (BES). The operation of CWs as BES (CW-BES), either in the form of microbial fuel cells (MFC) or microbial electrolysis cells (MEC), has only been investigated in recent years. The presented experiment used CW meso-scale systems applying a realistic horizontal flow regime and continuous feeding of real urban wastewater spiked with four OMPs (pharmaceuticals), namely carbamazepine (CBZ), diclofenac (DCF), ibuprofen (IBU) and naproxen (NPX). The study evaluated the removal efficiency of conventional CW systems (CW-control) as well as CW systems operated as closed-circuit MFCs (CW-MFCs) and MECs (CW-MECs). Although a few positive trends were identified for the CW-BES compared to the CW-control (higher average CBZ, DCF and NPX removal by 10-17% in CW-MEC and 5% in CW-MFC), these proved to be not statistically significantly different. Mesoscale experiments with real wastewater could thus not confirm earlier positive effects of CW-BES found under strictly controlled laboratory conditions with synthetic wastewaters.

Chemosphere, 38 pages, 1 figure, 4 tables (2 figures and 6 tables in Supplementary Information)

Country
Spain
Keywords

Meso-scale setup, Diclofenac, Cèl·lules electrolítiques, Bioelectric Energy Sources, :Desenvolupament humà i sostenible::Enginyeria ambiental::Tractament de l'aigua [Àrees temàtiques de la UPC], Wastewater, Quantitative Biology - Quantitative Methods, Waste Disposal, Fluid, Electrolysis, Real urban wastewater, Quantitative Methods (q-bio.QM), Emerging contaminants, Microbial fuel cells, Microbial electrolysis cells, Wetlands, FOS: Biological sciences, Àrees temàtiques de la UPC::Desenvolupament humà i sostenible::Enginyeria ambiental::Tractament de l'aigua, Electrolytic cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 77
    download downloads 122
  • 77
    views
    122
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
37
Top 10%
Average
Top 1%
77
122
Green
hybrid