
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Biodegradation half-lives of biodiesel fuels in aquatic and terrestrial systems: A review

pmid: 36403813
Biodegradation half-lives of biodiesel fuels in aquatic and terrestrial systems: A review
Information on biodegradation kinetics of biodiesel fuels is a key aspect in risk and impact assessment practice and in selection of appropriate remediation strategies. Unfortunately, this information is scattered, while factors influencing variability in biodegradation rates are still not fully understood. Therefore, we systematically reviewed 32 scientific literature sources providing 142 biodegradation and 56 mineralization half-lives of diesel and biodiesel fuels in various experimental systems. The analysis focused on the variability in half-lives across fuels and experimental conditions, reporting sets of averaged half-life values and their statistical uncertainty. Across all data points, biodegradation half-lives ranged from 9 to 62 days, and were 2-5.5 times shorter than mineralization half-lives. Across all fuels, biodegradation and mineralization half-lives were 2.5-8.5 times longer in terrestrial systems when compared to aquatic systems. The half-lives were generally shorter for blends with increasing biodiesel content, although differences in number of data points from various experiments masked differences in half-lives between different fuels. This in most cases resulted in lack of statistically significant effects of the type of blends and experimental system on biodegradation half-lives. Our data can be used for improved characterization of risks and impacts of biodiesel fuels in aerobic aquatic and terrestrial environments, while more experiments are required to quantify biodegradation kinetics in anaerobic conditions. Relatively high biodegradability of biodiesel may suggest that passive approaches to degrade and dissipate contaminants in situ, like monitored natural attenuation, may be appropriate remediation strategies for biodiesel fuels.
- Poznań University of Technology Poland
- Williams (United States) United States
- Technical University of Denmark Denmark
- Williams (United Kingdom) United Kingdom
- Wilks (United States) United States
Impact assessment, FAME, Kinetics, Biodegradation, Environmental, Biofuels, Biodiesel, Bioremediation, Gasoline, Risk assessment, Half-Life
Impact assessment, FAME, Kinetics, Biodegradation, Environmental, Biofuels, Biodiesel, Bioremediation, Gasoline, Risk assessment, Half-Life
1 Research products, page 1 of 1
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
