
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Sustainable valorization of water hyacinth waste pollutant via pyrolysis for advance microbial fuel investigation

pmid: 36563719
Present study has been focused on the bio-energy potential of waste biomass (water hyacinth leaves and its stem). Pyrolysis of both biomasses were investigated at five different heating rates (5-25 °C/min) using thermogravimetric analyzer. For both biomasses, maximum thermal degradation occurred within the temperature range of 200-400 °C, which is the active pyrolytic zone. Three non-iso-conversional (degradation models) including the Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa, and Starink were used to calculate the activation energy of both biomasses. The activation energy was around 92-98 kJ/mol for water hyacinth leaves and 151-153 kJ/mol for water hyacinth stems. The results suggest that these low-cost abundantly available biomasses have a good potential for the production of solid bio-fuel.
- King Saud University Saudi Arabia
- Birla Institute of Technology, Mesra India
- King Saud University Saudi Arabia
- Birla Institute of Technology, Mesra India
- Scotland's Rural College United Kingdom
Kinetics, Eichhornia, Thermogravimetry, Environmental Pollutants, Biomass, Pyrolysis
Kinetics, Eichhornia, Thermogravimetry, Environmental Pollutants, Biomass, Pyrolysis
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
