Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemical Engineering...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemical Engineering Research and Design
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Integrated process development for an optimum gas processing plant

Authors: Mamdouh A. Gadalla; Ibrahim Ashour; Abd El-Rahman Sayed; Abd El-Rahman Sayed;

Integrated process development for an optimum gas processing plant

Abstract

Abstract The aim of this work is to develop and optimize an integrated process for natural gas plant in Egypt instead of flaring these gases and losing their revenues. The natural gas is sour wet feed gas containing mercury and some of volatile organic compounds with a capacity of around 21 million cubic feet per day. These impurities require sophisticated gas treatment processes that can handle and control the pollutants to acceptable limits. The design of new gas plant will be performed through firstly, the design methodology and cascade configuration of gas plant units based on feed gas composition. Secondly, integrated development and optimization of gas treatment process model is achieved using Aspen HYSYS simulation program. Thirdly, modeling of natural gas liquids extraction unit and fractionation train is conducted based on the required marketable products specifications. Finally, Aspen process economic analyzer program is used to calculate the expected capital expenditures of the plant. Optimizing the plant configuration accounts for best selection of treatment units and processing equipment, including mercury removal unit, sulfur recovery unit, BTEX recovery unit, etc. The preliminary capital expenditures of the gas conditioning and processing plant will be around 48 MUSD.

Powered by OpenAIRE graph
Found an issue? Give us feedback