Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ KITopen (Karlsruhe I...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Chinese Journal of Chemical Engineering
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chinese Journal of Chemical Engineering
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Production of palmitoleic acid by oleaginous yeast Scheffersomyces segobiensis DSM 27193 using systematic dissolved oxygen regulation strategy

Authors: Zhou, Xinhai; Zhou, Dawei; Bao, Xinhui; Zhang, Yang; Zhou, Jie; Xin, Fengxue; Zhang, Wenming; +4 Authors

Production of palmitoleic acid by oleaginous yeast Scheffersomyces segobiensis DSM 27193 using systematic dissolved oxygen regulation strategy

Abstract

Palmitoleic acid (POA) can be naturally found only in few oil seeds and has significant applications in pharmaceutical industry. Recently, the isolated oleaginous yeast Scheffersomyces segobiensis DSM 27193 was identified with high content of POA in its intracellular lipid (13.80%). In this study, process optimization focused on dissolved oxygen regulation to improve POA production was conducted. Dynamic agitation was found to do significant enhancement on POA-rich lipid production than aeration regulation. Under the best condition of 1000 r·min−1 of agitation and 1 vvm of aeration, no ethanol was detected during the whole fermentation process, while a dry biomass concentration of 44.80 g·L−1 with 13.43 g·L−1 of lipid and 2.93 g·L−1 of POA was achieved. Transcription analysis revealed that the ethanol synthetic pathway was downregulated under the condition of high agitation, while the expression of the key enzymes responsible for lipid and POA accumulation were enhanced.

Country
Germany
Keywords

Palmitoleic acid production, info:eu-repo/classification/ddc/660, Ethanol, 660, ddc:660, Scheffersomyces segobiensis, Dissolved oxygen, Bioreactors, Chemical engineering, Bioprocess

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Green
hybrid
Related to Research communities
Energy Research