Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Current Opinion in C...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Opinion in Chemical Engineering
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Biorefineries and the food, energy, water nexus — towards a whole systems approach to design and planning

Authors: Sheila Samsatli; Elias Martinez-Hernandez; Elias Martinez-Hernandez;

Biorefineries and the food, energy, water nexus — towards a whole systems approach to design and planning

Abstract

Concerns over securing basic resources to an increasing world population have stressed the importance of critical interactions between the food, energy and water supply systems, as framed by the food-energy-water nexus concept. Current biorefineries producing first generation biofuels from food crops have impacted nexus resources, most notoriously land and food but also water and fossil energy resources required during cultivation and processing. Solutions to the nexus challenges of biorefineries require the search for alternative feedstocks and the application of methods that capture opportunities for synergistic interactions with the nexus. At the process level, more efficient water and energy use and food production could be possible if methods for extensive biomass fractionation, process integration and optimisation are developed. There is also a great opportunity to include the interactions between biomass supply and the nexus sectors in value chain optimisation to find strategic integrations that improve productivity and reduce losses and environmental impacts. By incorporating opportunities into a whole systems approach for design and planning, biorefineries will be able to balance nexus resource trade-offs, deliver their potential for full exploitation of biomass as the only source of renewable carbon and materials, and translate nexus issues into social welfare and sustainable development.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Top 10%
Top 10%
Top 10%