
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Responses of forest insect pests to climate change: not so simple

pmid: 31454625
Climate change is a multi-faceted phenomenon, including elevated CO2, warmer temperatures, more severe droughts and more frequent storms. All these components can affect forest pests directly, or indirectly through interactions with host trees and natural enemies. Most of the responses of forest insect herbivores to climate change are expected to be positive, with shorter generation time, higher fecundity and survival, leading to increased range expansion and outbreaks. Forest insect pest can also benefit from synergistic effects of several climate change pressures, such as hotter droughts or warmer storms. However, lesser known negative effects are also likely, such as lethal effects of heat waves or thermal shocks, less palatable host tissues or more abundant parasitoids and predators. The complex interplay between abiotic stressors, host trees, insect herbivores and their natural enemies makes it very difficult to predict overall consequences of climate change on forest health. This calls for the development of process-based models to simulate pest population dynamics under climate change scenarios.
Insecta, [SDV]Life Sciences [q-bio], Climate Change, 910, Carbon Dioxide, Forests, Trees, [SDV] Life Sciences [q-bio], Air Pollution, Animals, Herbivory
Insecta, [SDV]Life Sciences [q-bio], Climate Change, 910, Carbon Dioxide, Forests, Trees, [SDV] Life Sciences [q-bio], Air Pollution, Animals, Herbivory
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).200 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
