Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Colloids and Surface...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Colloids and Surfaces B Biointerfaces
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Aqueous and hydro-alcoholic media effects on polyols

Authors: Hassan Larhrib; Waseem Kaialy; Mohamed J Hajamohaideen; Barbara R. Conway; Ali Nokhodchi; Kofi Asare-Addo;

Aqueous and hydro-alcoholic media effects on polyols

Abstract

The ingestion of drug products with alcohol can have an adverse effect on drug levels in a patient's blood. The Food and Drug Agency (FDA) issued an alert in 2005 after hydromorphone was withdrawn from the market after clinical trials showed ingestion with alcohol to potentially result in lethal drug peak plasma concentrations. The potential impact of alcohol on extended release (ER) tablet matrices and the need to develop ER matrices robust to alcohol effects has then been of interest. This study investigated the compaction properties of polyols and their effect on drug release. Polyols (erythritol, xylitol, mannitol and maltitol) with increasing hydroxyl groups were used as diluents for HPMC matrices containing theophylline. Release profiles were determined in pH 1.2 and 6.8 dissolution media with hydro-alcoholic concentrations of 5-40%. Increases in the polyols' hydroxyl groups brought about an increase in tablet strength and a decrease in the drug release rates. This is likely due to stronger bond formation with increasing hydroxyls. The impact of alcohol on drug release was studied further for maltitol formulations. Maltitol was resilient to the presence of ethanol (5-40% v/v) at pH 1.2 (f2=57-74) but not at pH 6.8 (f2=36-48). Drug release was not different above 5% alcohol concentration at pH 6.8. The results of this in vitro study suggest that ethanol concentrations as high as 40% do not substantially alter the drug release properties of theophylline from maltitol matrix tablets. However, care and consideration should be given to the choice of polyol or mixture of polyols in obtaining a desired drug release profile.

Related Organizations
Keywords

Ethanol, Polymers, Water, Buffers, Erythritol, Hypromellose Derivatives, Sugar Alcohols, Theophylline, Mannitol, Maltose, Xylitol, Tablets

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Top 10%
Top 10%