Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Combustion and Flamearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Combustion and Flame
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2006
Data sources: IRIS Cnr
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2006
Data sources: IRIS Cnr
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2006
Data sources: CNR ExploRA
CNR ExploRA
Article . 2006
Data sources: CNR ExploRA
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Overlapping of heterogeneous and purely thermally activated solid-state processes in the combustion of a bituminous coal

Authors: O. Senneca; SALATINO, PIERO;

Overlapping of heterogeneous and purely thermally activated solid-state processes in the combustion of a bituminous coal

Abstract

Mechanistic studies of coal combustion have long highlighted the variety of reaction pathways along which gasification may take place. These involve chemisorption of reactants, formation of surface oxides, surface mobility of chemisorbed species, and product desorption. At the same time, exposure of the solid fuel to high temperatures is associated with solid-state thermally activated processes. Altogether, the course of gasification may be profoundly affected by the overlapping and interplay of heterogeneous oxidation with purely thermally activated solid-state reactions. In the present work the combustion of a South African bituminous coal is analyzed in the framework of a simplified reaction network that embodies heterogeneous oxidative and thermally activated processes (pyrolysis, thermal annealing, coal combustion, char combustion, oxygen chemisorption) active both on the raw coal and on its char. The kinetics of each process of the network is assessed by a combination of thermogravimetric and gas analysis on coal and char samples. The analysis is directed to the determination of the prevailing combustion pathway, established from the interplay of oxidative and solid-state thermally activated processes, as a function of combustion conditions (temperature, heating rate, particle size). © 2005 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Country
Italy
Keywords

Coal, Thermal annealing, Oxidation, Reactivity, Pyrolysis

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research