Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cryogenicsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cryogenics
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Numerical investigation of nitrogen spontaneous condensation flow in cryogenic nozzles using varying nucleation theories

Authors: Shuangtao Chen; Xiaodong Sun; Wan Sun; Yu Hou; Lu Niu;

Numerical investigation of nitrogen spontaneous condensation flow in cryogenic nozzles using varying nucleation theories

Abstract

Abstract The thermodynamic irreversible loss by condensation can have an important influence on the flow characteristics and thermal efficiency in air or nitrogen cryogenic turbo-expander involving spontaneous condensation flow. However, the design of wet type turbo-expander for cryogenic liquid plants has been constrained due to the complexity of nucleation theory and the difficulty of data measurement in cryogenic environments. This paper presents numerical simulations for prediction of nitrogen spontaneous condensation flow in cryogenic nozzles. The non-equilibrium simulations were performed using three nucleation theories with the help of ANSYS CFX solver. The standard Redlich-Kwong gas state equation and Eulerian–Eulerian governing equations were used in simulations. Comparison with the equilibrium condensation model the non-equilibrium condensation model achieves a better prediction of the flow characteristics for spontaneous condensation flow in cryogenic environments. The nucleation theory which is based on classical nucleation theory (CNT) and improved by Kantrowitz for non-isothermal effects shows a better prediction of pressure drop, location of condensation onset and supercooling compared with experimental data. The influence of varying nucleation theories on the calculation of nucleation rate, the supercooling distribution and the liquid mass fraction distribution were also analyzed.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Top 10%
Top 10%