Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Deep Sea Research Pa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Deep Sea Research Part II Topical Studies in Oceanography
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exploring ecosystem structure and function of the northern Kerguelen Plateau using a mass-balanced food web model

Authors: Roshni C. Subramaniam; Stuart P. Corney; Kerrie M. Swadling; Jessica Melbourne-Thomas;

Exploring ecosystem structure and function of the northern Kerguelen Plateau using a mass-balanced food web model

Abstract

Annual phytoplankton blooms on the northern region of the Kerguelen Plateau fuel a productive food web that supports highly valuable commercial fisheries for Patagonian toothfish (Dissostichus eleginoides) and mackerel icefish (Champsocephalus gunnari). The food web on the plateau is understudied in comparison to other regions of the Southern Ocean. Major linkages and energy pathways have not been explored, and the combined effects of fishing and a changing climate on the ecosystem are largely unknown. Single species studies on the plateau have shown that the combined effects of climate change and fisheries are impacting populations, however, it is unclear how these impacts translate to the ecosystem. We extended an existing Ecopath model to describe food web dynamics on the plateau and investigate food web interactions with the fishery. Results from our model highlight, for the first time, the properties of the food web, major energy pathways and energy transfers between trophic levels. Energy transfer from detritus was most efficient at the lowest trophic level while energy from primary production was more efficient at higher trophic levels. Consumption and respiration were high in our system, most likely due to the inclusion of bacteria and microzooplankton. Killer whales, cephalopods and myctophids were key functional groups for energy transfer in the system. These groups were relatively data poor, suggesting a useful focus area for future updates to the model. Patagonian toothfish and mackerel icefish were heavily consumed in the food web, however, the inclusion of fisheries catches and by-catch had little to no impact on food web dynamics.

Country
Australia
Keywords

Kerguelen Plateau, energy transfer, 590, ecopath, food web interactions, fishery

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%