Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecotoxicology and En...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ecotoxicology and Environmental Safety
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Combined effect of copper sulfate and water temperature on key freshwater trophic levels – Approaching potential climatic change scenarios

Authors: Fernando Gonçalves; Tânia Vidal; Vera M. F. da Silva; Isabel Campos; Nelson Abrantes; Catarina R. Marques; Jan Jacob Keizer;

Combined effect of copper sulfate and water temperature on key freshwater trophic levels – Approaching potential climatic change scenarios

Abstract

This work relied on the use microcosms to evaluate the individual and the combined effects of different levels of copper sulfate (0.0, 0.013, 0.064 and 0.318mg Cu L-1) - a fungicide commonly exceeding allowable thresholds in agricultural areas - and a range of water temperature increase scenarios (15, 20 and 25°C) on freshwater species belonging to different functional groups. Hence, the growth inhibition of primary producers (the microalgae Raphidocelis subcapitata and the macrophyte Lemna minor), as well as the survival and feeding behavior of a shredder species (the Trichoptera Schizopelex sp.) were evaluated. The results revealed that copper was toxic to primary producers growth, as well as shredders growth and survival, being the growth of L. minor particularly affected. Higher water temperatures had generally enhanced the growth of primary producers under non-contaminated (microalgae and macrophytes) or low-contaminated (macrophytes) conditions. Despite the tendency for a more pronounced toxicity of copper under increasing water temperatures, a significant interaction between the two factors was only observed for microalgae. Since the test organisms represent relevant functional groups for sustaining freshwater systems functions, the present results may raise some concerns on the impacts caused by possible future climate change scenarios in aquatic habitats chronically exposed to the frequent or intensive use of the fungicide copper sulfate.

Related Organizations
Keywords

Copper Sulfate, Climate Change, Temperature, Fresh Water, Feeding Behavior, Fungicides, Industrial, Chlorophyta, Ecosystem, Water Pollutants, Chemical

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Top 10%
gold