Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecotoxicology and En...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ecotoxicology and Environmental Safety
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation of the phytotoxicity of coal ash on lettuce (Lactuca sativa L.) germination, growth and metal uptake

Authors: Willis Gwenzi; Munyaradzi Mtisi;

Evaluation of the phytotoxicity of coal ash on lettuce (Lactuca sativa L.) germination, growth and metal uptake

Abstract

Land application of coal ash is considered an environmentally friendly option to improve soil quality, but limited information exists on metal bioavailability and phytotoxicity of coal ash to sensitive plant species such as lettuce (Lactuca sativa L.). Germination and pot bioassay experiments were conducted at six coal application rates (0% (control), 5%, 15%, 25%, 50% and 75% v/v) to investigate the hypothesis that, coal ash will have a hormetic effect on germination, growth, metal uptake and biomass yield of lettuce, characterized by stimulatory and phytotoxicity effects at low and high application rates, respectively. Total concentrations (mg/kg) of metals in coal ash spanned several orders of magnitude, and decreased in the order: Fe (5150.5), Mn (326.0), Zn (102.6), Cu (94.7), Ni (74.7) and Pb (11.6). Bioavailable concentrations of metals were very low (0.0-14.1 mg/kg), accounting for less than 2% of the total concentrations. Coal ash had no significant effect on germination indices, but had hormetic effects on radicle elongation, evidenced by stimulatory and phytotoxicity effects at low (5-25%) and high (50-75%) application rates, respectively. Coal ash application at 50% and 75% significantly (p < 0.05) reduced lettuce growth and edible biomass yield, but lower application rates (5-25%) were similar to the unamended soil (control). Fe, Mn, Zn, Cu and Ni bioavailability and plant uptake generally decreased with increasing coal ash application rates particularly at 50% and 75%. Soil pH significantly increased (p < 0.05) from 6.5 for the control to about 8 for 75% coal ash, while electrical conductivity (EC) increased by 2-7 times to about 0.9 and 1.5 dS/m at 50% and 75% coal ash, respectively. Significant inverse linear relationship (p < 0.05; r2 = 0.80) were observed between edible and total biomass yields and EC, suggesting that increased salinity at high coal ash application rates could account for reduced growth and biomass. Partial elemental balances showed that plant uptake of metals was very low, accounting for just less than 2% of the bioavailable concentrations, while the bulk of the metals (98-99%) remained in the soil. In conclusion, the current findings show that coal ash may have hormetic and phytotoxic effects on sensitive plant species, an observation contrary to the bulk of earlier literature documenting beneficial effects of coal ash application to soils. Long-term field studies are required to confirm the current findings based on laboratory and pot bioassay experiments.

Related Organizations
Keywords

Electric Conductivity, Biological Availability, Germination, Hydrogen-Ion Concentration, Coal Ash, Soil, Hormesis, Metals, Heavy, Soil Pollutants, Environmental Pollutants, Biomass, Lactuca

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%
gold