Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecotoxicology and En...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ecotoxicology and Environmental Safety
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparative study of the effects of different chelating ligands on the absorption and transport of mercury in maize (Zea mays L.)

Authors: Jiating Zhao; Bai Li; Yuxi Gao; Yufeng Li; Jiaxun Guan; Yunyun Li;

Comparative study of the effects of different chelating ligands on the absorption and transport of mercury in maize (Zea mays L.)

Abstract

Mercury (Hg) pollution seriously threatens food safety and has attracted global attention. Phytoextraction, due to its low cost, applicability, and environmental friendliness, is considered a new technology for clean-up of heavy metal contamination in the environment. However, the low bioavailability of Hg in polluted areas greatly limits the applicability of phytoextraction. Here, we compared the effects of six common chelating ligands on the absorption and transport of Hg in maize (Zea mays L.), which has a high biomass and short growth cycle. The results showed that the root length and biomass of maize seedlings of the groups treated with the six chelating ligands (EDTA, iodide, ammonium, thiosulfate, thiocyanate, and thiocarbamide) did not change compared with those of the non-treated groups. Co-exposure to Hg and each chelating ligand markedly alleviated the inhibitory effect induced by Hg. Iodide treatment resulted in the lowest root Hg content and highest translocation factor (TF) value, while ammonium treatment gave rise to the highest shoot Hg concentration and lowest TF. Compared with other chelating ligands, thiosulfate exhibited the maximum alleviation of Hg toxicity and achieved the highest concentration of Hg in the roots and aerial parts. Moreover, the TF and Hg accumulation in the thiosulfate and Hg co-exposed group were much higher than those in the group exposed to Hg alone. This finding suggests that, among these common chelating ligands, thiosulfate compounds have great potential for Hg phytoextraction, while the others can immobilize Hg in polluted areas.

Related Organizations
Keywords

Thiosulfates, Biological Availability, Biological Transport, Mercury, Ligands, Bioaccumulation, Plant Roots, Zea mays, Biodegradation, Environmental, Seedlings, Soil Pollutants, Biomass, Chelating Agents

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average
gold