Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecological Indicator...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ecological Indicators
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Climate imprints on tree-ring δ15N signatures of sessile oak (Quercus petraea Liebl.) on soils with contrasting water availability

Authors: Härdtle, Werner; Niemeyer, Thomas; Fichtner, Andreas; Li, Ying; Ries, Christian; Schuldt, Andreas; Walmsley, David; +1 Authors

Climate imprints on tree-ring δ15N signatures of sessile oak (Quercus petraea Liebl.) on soils with contrasting water availability

Abstract

Abstract In the present study we investigated long-term climate imprints (160 year period) on tree-ring δ15N signatures of sessile oak (Quercus petraea) at sites with contrasting water availability (i.e. Cambisols vs. Regosols in Luxembourg, Central Europe, with 175 mm and 42 mm available water capacity, respectively). We hypothesized that tree-ring δ15N signatures constitute a sensitive indicator to long-term shifts in climatic conditions. Our findings revealed a close positive correlation between winter and spring temperatures and tree-ring δ15N signatures. These relationships were stronger for Cambisol than for Regosol sites. If entire chronologies were considered, peaks in annual mean temperatures closely corresponded with peaks in tree-ring δ15N signatures, with both annual mean temperatures and δ15N signatures reaching their maxima within the last two decades. In addition, we found a weak but significant impact of February precipitation on δ15N signatures, but only for Cambisols. We hypothesize that these findings are attributable to climate- (particularly temperature-) mediated nitrification rates in forest soils. As nitrification is a strongly fractionating process that produces 15N-depleted nitrate and higher isotopic ratios for ammonium in the topsoil, increased nitrification leads to 15N-enriched pools of Ninorg in the upper soil horizons and therefore higher δ15N signatures in plant tissues. Weaker correlations at Regosol sites were likely related to dryer and more acidic site conditions, both of which may reduce nitrification rates. Comparisons of oak and beech trees in the study area point to species-specific trajectories of wood nitrogen isotopes, likely related to the partitioning of ammonium and nitrate among species. In conclusion, tree-ring δ15N signatures may serve as an integrator of terrestrial N cycling and as such constitute a valuable tool in the identification of spatial and temporal patterns of N cycling in relation to environmental changes. Due to the mediating effects of the isotopic composition of the respective N sources, analyses of the isotopic composition of airborne N loads would support the interpretation of wood δ15N patterns, particularly in areas that are subject to high N pollution.

Country
Germany
Keywords

/dk/atira/pure/core/keywords/559922418; name=Biology, Luxembourg, /dk/atira/pure/subjectarea/asjc/1800; name=Decision Sciences(all), /dk/atira/pure/sustainabledevelopmentgoals/life_on_land; name=SDG 15 - Life on Land, /dk/atira/pure/core/keywords/biology; name=Ecosystems Research, /dk/atira/pure/subjectarea/asjc/1100/1105; name=Ecology, Evolution, Behavior and Systematics, nitrogen deposition, climate change, dendrochemistry dendroecology, /dk/atira/pure/subjectarea/asjc/2300/2303; name=Ecology, Isotope fractionation, /dk/atira/pure/sustainabledevelopmentgoals/climate_action; name=SDG 13 - Climate Action

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Top 10%
Green
gold