Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della Ricer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2015
Data sources: CNR ExploRA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Ecological Modelling
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2015
Data sources: IRIS Cnr
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modelling the strategy of mid-water trawlers targeting small pelagic fish in the Adriatic Sea and its drivers

Authors: Tommaso Russo; Jacopo Pulcinella; Antonio Parisi; Michela Martinelli; Andrea Belardinelli; Alberto Santojanni; Stefano Cataudella; +2 Authors

Modelling the strategy of mid-water trawlers targeting small pelagic fish in the Adriatic Sea and its drivers

Abstract

Abstract Mid-water pair trawling (PTM) targeting small pelagic resources represents a key fishing activity in the Adriatic Sea. This fishery is experiencing a long period of crisis due to resource depletion and the lack of appropriate market strategies, and vessels spend most of the time searching for fishing schools. The searching strategy largely depends on the interaction between vessels: the captains of the {PTM} units take their decision also checking the position and the fishing status of other vessels. Understanding this strategy represents a key step towards a more effective resource management, since strategies directly determine the pattern of fishing effort. A Conditional Logit model has been devised to analyze fishermen's strategy as a non-cooperative game. This category of games is characterized by the existence of (at least) one equilibrium point - a Nash Equilibrium - in which each player plays his strategy, that is a Best Response to the strategies of the other players. This equilibrium point was estimated for the different scenarios defined by environmental (sea surface temperature and atmospheric pressure) and economic (fuel and fish prices at market) variables. Vessel Monitoring System data were used to capture fleet activity, while different datasets were collected to reconstruct environmental and economic drivers. Results indicate a good predictive power of the model, and suggest that the equilibrium strategy that guides units' behaviour is invariant with respect to environmental conditions, whereas it is largely influenced by economic factors. These latter, via strategies, may determine important consequences on the resources in terms of exploited areas and the impact of fishing activity. In particular, a low fuel price when fish price is high leads to higher values of CPUE, and then to a more efficient but also impacting fishing activity.

Country
Italy
Keywords

Settore SECS-S/03 - STATISTICA ECONOMICA, Fisheries ecology, Pair trawl, Fisheries ecology; VMS; Pair trawl; Mediterranean; Sustainability, Mediterranean, 333, Sustainability, Settore BIO/07 - ECOLOGIA, VMS

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%