Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecological Modellingarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ecological Modelling
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Ecological Modelling
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modelling the effect of climate-induced changes in recruitment and juvenile growth on mixed-forest dynamics: The case of montane–subalpine Pyrenean ecotones

Authors: Christian Messier; Christian Messier; Aitor Ameztegui; Lluís Coll;

Modelling the effect of climate-induced changes in recruitment and juvenile growth on mixed-forest dynamics: The case of montane–subalpine Pyrenean ecotones

Abstract

Most predictive models forecast significant upward displacement of forest species due to increases in temperatures, but not all the species respond in the same way to changes in climate. In temperate or mountain systems, biotic competitive interactions drive species distributions, and responses to climate change will ultimately depend upon productive and demographic processes such as growth, recruitment and mortality. We parameterized and used an individual-based, spatially explicit model of forest dynamics (SORTIE-ND) to investigate the role of species-specific differences in juvenile performance induced by climate change (juvenile growth and recruitment ability) in the dynamics of mixed forests located in the montane-subalpine ecotone of the Pyrenees. We assessed this role for two types of forests composed of three species with differing light requirements and sensitivity to climate change: (1) a mixed forest with two shade-intolerant pines (Pinus uncinata and Pinus sylvestris) and (2) a mixed forest composed by a shade-intolerant pine and a shade-tolerant fir (Abies alba). Our results show that for species with similar light requirements (i.e., both pines), small differences in sapling growth response to climate change can lead to significant differences in future species composition (an increase in P. sylvestris growth of 10% leads to an increase in its abundance from 42% to 50.3%). Conversely, in pine-fir forests, shade-tolerance results more decisive than climate-induced changes in growth in driving the future forest composition. The authors are particularly grateful to M. Beaudet, M.J. Papaik, L. Murphy, and C.D. Canham for their help during parameterization of the model and for technical support. We acknowledge W.F.J. Parsons (CEF) for helpful comments and English corrections on an earlier version of the manuscript. Financial support for this study was provided by the Spanish Ministry of Science and Innovation through the projects Consolider-Ingenio Montes (CSD2008-00040), DINAMIX (AGL2009-13270-C02) and RESILFOR (AGL2012-40039-C02-01), and by the European Commission through the Marie Curie IRSES project “NEWFORESTS”. LC was supported through a Ramon y Cajal contract (RYC-2009-04985), while the Spanish Ministry of Education provided AA with support through a predoctoral grant (FPU Programme – AP2007-01663).

Country
Spain
Keywords

Ecotones, Climate change, Modelling, Forest dynamics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
Green
hybrid