Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Estuarine Coastal an...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Estuarine Coastal and Shelf Science
Article . 2016 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Estuarine Coastal and Shelf Science
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impact of climate change on UK estuaries: A review of past trends and potential projections

Authors: Robins, Peter E.; Skov, Martin W.; Lewis, Matt J.; Giménez, Luis; Davies, Alan G.; Malham, Shelagh K.; Neill, Simon P.; +4 Authors

Impact of climate change on UK estuaries: A review of past trends and potential projections

Abstract

AbstractUK estuarine environments are regulated by inter-acting physical processes, including tidal, wave, surge, river discharge and sediment supply. They regulate the fluxes of nutrients, pollutants, pathogens and viruses that determine whether coastlines achieve the Good Environmental Status (GEnS) required by the EU's Marine Strategy Directive. We review 20th century trends and 21st century projections of changes to climatic drivers, and their potential for altering estuarine bio-physical processes. Sea-level rise will cause some marine habitats to expand, and others diminish in area extent. The overall consequences of estuarine morphodynamics to these habitat shifts, and vice-versa, are unknown. Increased temperatures could intensify microbial pathogen concentrations and increase public health risk. The patterns of change of other climatic drivers are difficult to predict (e.g., river flows and storm surges). Projected increased winter river flows throughout UK catchments will enhance the risks of coastal eutrophication, harmful algal blooms and hypoxia in some contexts, although there are spatial variabilities in river flow projections. The reproductive success of estuarine biota is sensitive to saline intrusion and corresponding turbidity maxima, which are projected to gradually shift landwards as a result of sea-level rise. Although more-frequent flushing events in winter and longer periods of drought in summer are predicted, whereby the subsequent estuarine mixing and recovery rates are poorly understood. With rising estuarine salinities, subtidal species can penetrate deeper into estuaries, although this will depend on the resilience/adaptation of the species. Many climate and impact predictions lack resolution and spatial cover. Long-term monitoring and increased research, which considers the catchment-river-estuary-coast system as a whole, is needed to support risk predicting and mitigatory strategies.

Related Organizations
Keywords

Estuarine habitats, Biodiversity, Aquatic Science, Oceanography, Water quality, Climate change, UK, Estuaries

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    204
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
204
Top 1%
Top 10%
Top 1%
hybrid