
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
Investigation of intercooling effect in CO2 capture energy consumption
AbstractThe aqueous absorption technology is one of the most feasible options for post combustion CO2 capture. High energy requirement is the main problem for this technology. Intercooling is possibly one of the strategies that can reduce the energy consumption in some cases. It is used in other industries like oil refineries and has a promising effect on energy use reduction. However, the effect may depend on the absorbent system used and the configuration of the process.In this study, the effect of intercooling is investigated for monoethanolamine (MEA) and diethanolamine (DEA). The results show that the best location for intercooling, based on minimizing energy requirement per kg of CO2 captured is about 1/4th to 1/5th of the height of the column from the bottom. The effect of different parameters like lean loading, amine concentration, cooling temperature, etc is investigated in this study. The results for MEA and DEA are compared to see the effect of solvent on intercooling performance.
- NTNU Norway
- Norwegian University of Science and Technology Norway
- NTNU Norway
Energy(all), Intercooling, CO2 capture, Post combustion, Modelling
Energy(all), Intercooling, CO2 capture, Post combustion, Modelling
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).36 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
