
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Exploring capillary trapping efficiency as a function of interfacial tension, viscosity, and flow rate

AbstractWe present experimental results based on computed x-ray microtomography (CMT) for quantifying capillary trapping mechanisms as a function of fluid properties using several pairs of analog fluids to span a range of potential supercritical CO2-brine conditions. Our experiments areconducted in a core-flood apparatus using synthetic porous media and we investigate capillary trapping by measuring trapped non-wetting phase area as a function of varying interfacial tension, viscosity, and fluid flow rate. Experiments are repeated for a single sintered glass bead core using three different non-wetting phase fluids, and varying concentrations of surfactants, to explore and separate the effects of interfacial tension, viscosity, and fluid flow rate. Analysis of the data demonstrates distinct and consistent differences in the amount of initial (i.e. following CO2 injection) and residual (i.e. following flood or WAG scheme) non-wetting phase occupancy as a function of fluid properties and flow rate. Further experimentation and analysis is needed, but these preliminary results indicate trends that can guide design of injection scenarios such that both initial and residual trapped gas occupancy is optimized.
- Los Alamos National Laboratory United States
- Oregon State University United States
- University of New England United States
- Oregon State University United States
- University of New England Australia
Residual phase, Viscosity, Flow rate, Energy(all), X-ray tomography, Interfacial tension, Capllary trapping
Residual phase, Viscosity, Flow rate, Energy(all), X-ray tomography, Interfacial tension, Capllary trapping
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).70 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
