
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Transparent Conducting Oxides for High Temperature Processing

handle: 20.500.14243/255103
Abstract Indium tin oxide (ITO) thin films were deposited by magnetron sputtering from a ceramic target, and annealed at temperatures up to 1000°C in N2 atmosphere. Some samples were capped in a-Si:H or spin-on glass to prevent residual oxygen contamination from the annealing ambient, and annihilation of oxygen vacancies. The electrical and optical properties were measured before and after annealing. It is found that the protecting layer effectively limits the ITO degradation up to 900°C, whereas high transparency is preserved in all cases. The results indicate the applicability of the procedure to high temperature devices, and opens the way to the application of a variety of nanostructured materials in advanced photovoltaic devices.
thermal annealing, optical properties, TCO, Energy(all), ITO
thermal annealing, optical properties, TCO, Energy(all), ITO
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
