
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Co-evaporated Tin Sulfide Thin Films on Bare and Mo-coated Glass Substrates as Photovoltaic Absorber Layers

This work has been focused on the synthesis by co-evaporation on bare and Mo-coated glass substrates of tin sulfide films with thicknesses in the 700-1200 nm range for use as absorber layers, with a substrate temperature at 350 ??C and a sulfur partial pressure of 1-2*10-3 Pa. After evaporation, the samples were heated at 500 ??C under Ar atmosphere. The evolution of the morphological, structural, chemical and optical properties of the samples deposited on bare or Mo-coated glass substrates has been analyzed as a function of the thickness, before and after annealing. For the samples grown on bare glass, some phase mixing has been observed by X-ray diffraction (XRD). Samples with reduced thickness preferably crystallize in the SnS phase, whereas thicker layers crystallize in the Sn2S3 phase. Otherwise, the Mo-coated glass substrate favors the crystallinity in the phase SnS preferably. Scanning electron microscope (SEM) shows thin films with homogeneous and uniform surface. All samples were characterized by reflectance (R) and transmittance (T) measurements in the wavelength range 300-1500 nm, showing an increase of the maxima of reflectance when the films are obtained on bare glass and after annealing. The energy band gap values, calculated from optical measurements of T and R, are between 1.14-1.20 eV, being suitable for absorbers layers in photovoltaic applications.
film thickness, reflectance, band gap energy, annealing temperature, X-ray diffraction, termography, Energy(all), substrate temperature, band-gap energy
film thickness, reflectance, band gap energy, annealing temperature, X-ray diffraction, termography, Energy(all), substrate temperature, band-gap energy
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
