Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Procediaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Procedia
Article . 2017 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Procedia
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Biosurfactant Surfactin as a Kinetic Promoter for Methane Hydrate Formation

Authors: Gaurav Bhattacharjee; Kirti Zare; Rajnish Kumar; Syed G. Dastager; Rahul B. Mawlankar; Vivek Barmecha; Rajesh Naik; +2 Authors

The Biosurfactant Surfactin as a Kinetic Promoter for Methane Hydrate Formation

Abstract

Abstract In the present study, the effect of the biosurfactant Surfactin on methane hydrate formation kinetics was studied. Initially, several marine derived species were screened for the presence of Surfactin. The polymerase chain reaction technique was used as the preliminary screening step for Surfactin which was then followed up by a couple of different assays to provide conclusive evidence of the same. Based on these tests, the D-9 bacterial strain was identified as a producer of Surfactin. Once the presence of Surfactin had been proven, its effect on methane hydrate formation kinetics was investigated upon by carrying out hydrate formation experiments in a stirred tank reactor. The cell free supernatant containing Surfactin was itself used as the hydrate forming solution without any further processing. It was found that the presence of Surfactin in the system greatly enhances hydrate formation kinetics as compared to pure water. In fact the kinetics in presence of Surfactin also surpassed that obtained with 1 wt% SDS, the most commonly used synthetic kinetic hydrate promoter. This basic study can pave the way for more sophisticated research on the use of biosurfactants as kinetic promoters with a view on rapid methane hydrate formation kinetics for applications such as methane separation, storage and transport.

Powered by OpenAIRE graph
Found an issue? Give us feedback